Amino acid deprivation triggers a novel GCN2-independent response leading to the transcriptional reactivation of non-native DNA sequences

PLoS One. 2018 Jul 18;13(7):e0200783. doi: 10.1371/journal.pone.0200783. eCollection 2018.

Abstract

In a variety of species, reduced food intake, and in particular protein or amino acid (AA) restriction, extends lifespan and healthspan. However, the underlying epigenetic and/or transcriptional mechanisms are largely unknown, and dissection of specific pathways in cultured cells may contribute to filling this gap. We have previously shown that, in mammalian cells, deprivation of essential AAs (methionine/cysteine or tyrosine) leads to the transcriptional reactivation of integrated silenced transgenes, including plasmid and retroviral vectors and latent HIV-1 provirus, by a process involving epigenetic chromatic remodeling and histone acetylation. Here we show that the deprivation of methionine/cysteine also leads to the transcriptional upregulation of endogenous retroviruses, suggesting that essential AA starvation affects the expression not only of exogenous non-native DNA sequences, but also of endogenous anciently-integrated and silenced parasitic elements of the genome. Moreover, we show that the transgene reactivation response is highly conserved in different mammalian cell types, and it is reproducible with deprivation of most essential AAs. The General Control Non-derepressible 2 (GCN2) kinase and the downstream integrated stress response represent the best candidates mediating this process; however, by pharmacological approaches, RNA interference and genomic editing, we demonstrate that they are not implicated. Instead, the response requires MEK/ERK and/or JNK activity and is reproduced by ribosomal inhibitors, suggesting that it is triggered by a novel nutrient-sensing and signaling pathway, initiated by translational block at the ribosome, and independent of mTOR and GCN2. Overall, these findings point to a general transcriptional response to essential AA deprivation, which affects the expression of non-native genomic sequences, with relevant implications for the epigenetic/transcriptional effects of AA restriction in health and disease.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acids, Essential / deficiency
  • Amino Acids, Essential / metabolism*
  • Animals
  • Blotting, Western
  • CRISPR-Cas Systems
  • Cell Line
  • Gene Editing
  • HeLa Cells
  • Hep G2 Cells
  • Humans
  • Mice
  • Protein Serine-Threonine Kinases / genetics
  • Protein Serine-Threonine Kinases / metabolism*
  • RNA Interference
  • Real-Time Polymerase Chain Reaction
  • Signal Transduction / genetics
  • Signal Transduction / physiology
  • Transcriptional Activation / genetics
  • Transcriptional Activation / physiology

Substances

  • Amino Acids, Essential
  • EIF2AK4 protein, human
  • Eif2ak4 protein, mouse
  • Protein Serine-Threonine Kinases

Grants and funding

This study was funded by the Ajinomoto Innovation Alliance Program, (AIAP; https://www.ajinomoto.com/en/rd/AIAP/index.html#aiap) (to M.V.S and D.G), which is a joint research initiative of Ajinomoto Co., Inc., Japan. One of the authors [M.B.] is an employee of Ajinomoto Co., and his specific roles are articulated in the ‘author contributions’ section. The commercial funder provided support in the form of salary for author [M.B.] and some of the necessary research materials (medium for cell culture), but did not have any additional role in the study design, data collection and analysis, or preparation of the manuscript, and the authors had unrestricted access to the data. Due to a confidentiality agreement, the commercial funder participated only in the decision to publish the data obtained during the study, without any restriction.