Impact of chlorine dioxide disinfection of irrigation water on the epiphytic bacterial community of baby spinach and underlying soil

PLoS One. 2018 Jul 18;13(7):e0199291. doi: 10.1371/journal.pone.0199291. eCollection 2018.

Abstract

The contamination of pathogenic bacteria through irrigation water is a recognized risk factor for fresh produce. Irrigation water disinfection is an intervention strategy that could be applied to reduce the probability of microbiological contamination of crops. Disinfection treatments should be applied ensuring minimum effective doses, which are efficient in inhibiting the microbial contamination while avoiding formation and accumulation of chemical residues. Among disinfection technologies available for growers, chlorine dioxide (ClO2) represents, after sodium hypochlorite, an alternative disinfection treatment, which is commercially applied by growers in the USA and Spain. However, in most of the cases, the suitability of this treatment has been tested against pathogenic bacteria and low attention have been given to the impact of chemical residues on the bacterial community of the vegetable tissue. The aim of this study was to (i) to evaluate the continual application of chlorine dioxide (ClO2) as a water disinfection treatment of irrigation water during baby spinach growth in commercial production open fields, and (ii) to determine the subsequent impact of these treatments on the bacterial communities in water, soil, and baby spinach. To gain insight into the changes in the bacterial community elicited by ClO2, samples of treated and untreated irrigation water as well as the irrigated soil and baby spinach were analyzed using Miseq® Illumina sequencing platform. Next generation sequencing and multivariate statistical analysis revealed that ClO2 treatment of irrigation water did not affect the diversity of the bacterial community of water, soil and crop, but significant differences were observed in the relative abundance of specific bacterial genera. This demonstrates the different susceptibility of the bacteria genera to the ClO2 treatment. Based on the obtained results it can be concluded that the phyllosphere bacterial community of baby spinach was more influenced by the soil bacteria community rather than that of irrigation water. In the case of baby spinach, the use of low residual ClO2 concentrations (approx. 0.25 mg/L) to treat irrigation water decreased the relative abundance of Pseudomonaceae (2.28-fold) and Enterobacteriaceae (2.5-fold) when comparing treated versus untreated baby spinach. Members of these two bacterial families are responsible for food spoilage and foodborne illnesses. Therefore, a reduction of these bacterial families might be beneficial for the crop and for food safety. In general it can be concluded that the constant application of ClO2 as a disinfection treatment for irrigation water only caused changes in two bacterial families of the baby spinach and soil microbiota, without affecting the major phyla and classes. The significance of these changes in the bacterial community should be further evaluated.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Agricultural Irrigation
  • Chlorine Compounds / adverse effects*
  • Chlorine Compounds / chemistry
  • Crops, Agricultural / drug effects*
  • Disinfectants / adverse effects*
  • Disinfectants / pharmacology
  • Food Safety
  • Humans
  • Oxides / adverse effects*
  • Oxides / chemistry
  • Soil Microbiology*
  • Spain
  • Spinacia oleracea / drug effects
  • Spinacia oleracea / microbiology
  • Water / chemistry
  • Water Microbiology
  • Water Purification

Substances

  • Chlorine Compounds
  • Disinfectants
  • Oxides
  • Water
  • chlorine dioxide

Grants and funding

Authors are thankful for the financial support from the Center for Produce Safety Grant Agreement (Projects 2015-374 and 2017-01 to A.A.) and the MINECO (Projects AGL2013-48529-R and AGL2016-75878-R to M.I.G.). P. Truchado is holder of a Juan de la Cierva incorporation contract from the MINECO (IJCI-2014-20932). Support provided by the Fundación Séneca (19900/GERM/15) and Proyecto Intramural (201670E056 to M.I.G.) is also appreciated. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.