Alteration in the expression of the renin-angiotensin system in the myocardium of mice conceived by in vitro fertilization

Biol Reprod. 2018 Dec 1;99(6):1276-1288. doi: 10.1093/biolre/ioy158.

Abstract

Epidemiological studies have revealed that offspring conceived by in vitro fertilization (IVF) have an elevated risk of cardiovascular malformations at birth, and are more predisposed to cardiovascular diseases. The renin-angiotensin system (RAS) plays an essential role in both the pathogenesis of congenital heart disease in fetuses and cardiovascular dysfunction in adults. This study aimed to assess the relative expression levels of genes in the RAS pathway in mice conceived using IVF, compared to natural mating with superovulation. Results demonstrated that expression of the angiotensin II receptor type 1 (AGTR1), connective tissue growth factor (CTGF), and collagen 3 (COL3), in the myocardial tissue of IVF-conceived mice, was elevated at 3 weeks, 10 weeks, and 1.5 years of age, when compared to their non-IVF counterparts. These data were supported by microRNA microarray analysis of the myocardial tissue of aged IVF-conceived mice, where miR-100, miR-297, and miR-758, which interact with COL3, AGTR1, and COL1 respectively, were upregulated when compared to naturally mated mice of the same age. Interestingly, bisulfite sequencing data indicated that IVF-conceived mice exhibited decreased methylation of CpG sites in Col1. In support of our in vivo investigations, miR-297 overexpression was shown to upregulate AGTR1 and CTGF, and increased cell proliferation in cultured H9c2 cardiomyocytes. These findings indicate that the altered expression of RAS in myocardial tissue might contribute to cardiovascular malformation and/or dysfunction in IVF-conceived offspring. Furthermore, these cardiovascular abnormalities might be the result of altered DNA methylation and abnormal regulation of microRNAs.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Collagen Type I / genetics
  • Collagen Type I / metabolism
  • Collagen Type I, alpha 1 Chain
  • CpG Islands
  • DNA Methylation
  • Female
  • Fertilization in Vitro / veterinary*
  • Gene Expression Regulation / physiology*
  • Male
  • Mice
  • Myocardium / metabolism*
  • Myocytes, Cardiac / metabolism
  • Renin-Angiotensin System / physiology*
  • Ventricular Remodeling / physiology

Substances

  • Collagen Type I
  • Collagen Type I, alpha 1 Chain