Development, commissioning, and evaluation of a new intensity modulated minibeam proton therapy system

Med Phys. 2018 Jul 15. doi: 10.1002/mp.13093. Online ahead of print.

Abstract

Purpose: To invent, design, construct, and commission an intensity modulated minibeam proton therapy system (IMMPT) without the need for physical collimation and to compare its resulting conformity to a conventional IMPT system.

Methods: A proton therapy system (Hitachi, Ltd, Hitachi City, Japan; Model: Probeat-V) was specially modified to produce scanned minibeams without collimation. We performed integral depth dose acquisitions and calibrations using a large diameter parallel-plate ionization chamber in a scanning water phantom (PTW, Freiburg, Germany; Models: Bragg Peak ionization chamber, MP3-P). Spot size and shape was measured using radiochromic film (Ashland Advanced Materials, Bridgewater NJ; Type: EBT3), and a synthetic diamond diode type scanned point by point in air (PTW Models: MicroDiamond, MP3-P). The measured data were used as inputs to generate a Monte Carlo-based model for a commercial radiotherapy planning system (TPS) (Varian Medical Systems, Inc., Palo Alto, CA; Model: Eclipse v13.7.15). The regular ProBeat-V system (sigma ~2.5 mm) TPS model was available for comparison. A simulated base of skull case with small and medium targets proximal to brainstem was planned for both systems and compared.

Results: The spot sigma is determined to be 1.4 mm at 221 MeV at the isocenter and below 1 mm at proximal distances. Integral depth doses were indistinguishable from the standard spot commissioning data. The TPS fit the spot profiles closely, giving a residual error maximum of 2.5% in the spot penumbra tails (below 5% of maximum) from the commissioned energies 69.4 to 221.3 MeV. The resulting IMMPT plans were more conformal than the IMPT plans due to a sharper dose gradient (90-10%) 1.5 mm smaller for the small target, and 1.3 mm for the large target, at a representative central axial water equivalent depth of 7 cm.

Conclusions: We developed, implemented, and tested a new IMMPT system. The initial results look promising in cases where treatments can benefit from additional dose sparing to neighboring sensitive structures.

Keywords: PBS; commissioning; dosimetry; fluence map; minibeam; modulated; proton; scanning.