Kinetic analyses and structure-activity relationship studies of synthetic lysine acetylation catalysts

Bioorg Med Chem. 2018 Oct 15;26(19):5359-5367. doi: 10.1016/j.bmc.2018.07.009. Epub 2018 Jul 7.

Abstract

Lysine acylation of proteins is a crucial chemical reaction, both as a post-translational modification and as a method for bioconjugation. We previously developed a chemical catalyst, DSH, which activates a chemically stable thioester including acyl-CoA, allowing the site-selective lysine acylation of histones under physiological conditions. However, a more active catalyst is required for efficient lysine acylation in more complex biological milieu, such as in living cells, but there are no rational guidelines for developing efficient lysine acylation catalysts for use under physiological conditions as opposed to in organic solvents. We, herein, conducted a kinetic analysis of the ability of DSH and several derivatives to mediate lysine acetylation to better understand the structural elements essential for high acetylation activity under physiological conditions. Interestingly, the obtained trend in reactivity was different from that observed in organic solvents, suggesting that a different principle is necessary for designing chemical catalysts specifically for use under physiological conditions compared to catalysts for use in organic solvents. Based on the obtained information, we identified a new catalyst scaffold with high activity and structural flexibility for further modification to improve this catalyst system.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetylation
  • Catalysis
  • Histones / metabolism
  • Kinetics
  • Lysine / chemistry*
  • Structure-Activity Relationship

Substances

  • Histones
  • Lysine