Genes under positive selection in the core genome of pathogenic Bacillus cereus group members

Infect Genet Evol. 2018 Nov:65:55-64. doi: 10.1016/j.meegid.2018.07.009. Epub 2018 Jul 10.

Abstract

In this comparative genomics study our aim was to unravel genes under positive selection in the core genome of the Bacillus cereus group. Indeed, the members of this group share close genetic relationships but display a rather large phenotypic and ecological diversity, providing a unique opportunity for studying how genomic changes reflect ecological adaptation during the divergence of a bacterial group. For this purpose, we screened ten completely sequenced genomes of four pathogenic Bacillus species, finding that 254 out of 3093 genes have codon sites with dN/dS (ω) values above one. These results remained unchanged after having disentangled the confounding effects of recombination and selection signature in a Bayesian framework. The presumably adaptive nucleotide polymorphisms are distributed over a wide range of biological functions, such as antibiotic resistance, DNA repair, nutrient uptake, metabolism, cell wall assembly and spore structure. Our results indicate that adaptation to animal hosts, whether as pathogens, saprophytes or symbionts, is the major driving force in the evolution of the Bacillus cereus group. Future work should seek to understand the evolutionary dynamics of both core and accessory genes in an integrative framework to ultimately unravel the key networks involved in host adaptation.

Keywords: Bacillus anthracis; Bacillus cereus; Bacillus thuringiensis; Bacillus weihenstephanensis; COG; Comparative genomics; clusters of ortholog groups; epidemiology; selection.

MeSH terms

  • Anti-Bacterial Agents / pharmacology
  • Bacillus cereus / classification
  • Bacillus cereus / drug effects
  • Bacillus cereus / genetics*
  • Bacillus cereus / pathogenicity
  • Cell Division
  • Cell Wall
  • DNA Replication
  • Drug Resistance, Bacterial
  • Evolution, Molecular*
  • Genes, Bacterial*
  • Genome, Bacterial*
  • Genomics*
  • Gram-Positive Bacterial Infections / microbiology*
  • Phylogeny
  • Recombination, Genetic
  • Selection, Genetic*
  • Virulence Factors

Substances

  • Anti-Bacterial Agents
  • Virulence Factors