Plasmonic Hot-Carrier-Mediated Tunable Photochemical Reactions

ACS Nano. 2018 Aug 28;12(8):8415-8422. doi: 10.1021/acsnano.8b03830. Epub 2018 Jul 18.

Abstract

Hot-carrier generation from surface plasmon decay has found applications in many branches of physics, chemistry, materials science, and energy science. Recent reports demonstrated that the hot carriers generated from plasmon decay in nanoparticles can transfer to attached molecules and drive photochemistry which was thought impossible previously. In this work, we have computationally explored the atomic-scale mechanism of a plasmonic hot-carrier-mediated chemical process, H2 dissociation. Numerical simulations demonstrate that, after photoexcitation, hot carriers transfer to the antibonding state of the H2 molecule from the nanoparticle, resulting in a repulsive-potential-energy surface and H2 dissociation. This process occurs when the molecule is close to a single nanoparticle. However, if the molecule is located at the center of the gap in a plasmonic dimer, dissociation is suppressed due to sequential charge transfer, which efficiently reduces occupation in the antibonding state and, in turn, reduces dissociation. An asymmetric displacement of the molecule in the gap breaks the symmetry and restores dissociation when the additional charge transfer is significantly suppressed. Thus, these models demonstrate the possibility of structurally tunable photochemistry via plasmonic hot carriers.

Keywords: H2 dissociation; charge transfer; hot carriers; photocatalysis; plasmonic energy conversion; plasmonics.