High-Performance, Ultrathin, Ultraflexible Organic Thin-Film Transistor Array Via Solution Process

Small. 2018 Jul 12:e1801020. doi: 10.1002/smll.201801020. Online ahead of print.

Abstract

Ultrathin organic thin-film transistors (OTFTs) have received extensive attention due to their outstanding advantages, such as extreme flexibility, good conformability, ultralight weight, and compatibility with low-cost and large-area solution-processed techniques. However, compared with the rigid substrates, it still remains a challenge to fabricate high-performance ultrathin OTFTs. In this study, a high-performance ultrathin 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) OTFT array is demonstrated via a simple spin-coating method, with mobility as high as 11 cm2 V-1 s-1 (average mobility: 7.22 cm2 V-1 s-1 ), on/off current ratio of over 106 , switching current of >1 mA, and a good yield ratio as high as 100%. The ultrathin thickness at ≈380 nm and the ultralight weight at ≈0.89 g m-2 enable the free-standing OTFTs to imperceptibly adhere onto human skin, and even a damselfly wing without affecting its flying. More importantly, the OTFTs show good electrical characteristics and mechanical stability when conformed onto the curved surfaces and even folded in a book after 100 folding cycles. These results illustrate the broad application potential of this simply fabricated ultrathin OTFT in next-generation electronics such as foldable displays and wearable devices.

Keywords: organic thin-film transistors; solution-processed techniques; ultraflexible electronics; ultrathin electronics.