Enhancing the WorldClim data set for national and regional applications

Sci Total Environ. 2018 Jun 1:625:1628-1643. doi: 10.1016/j.scitotenv.2017.12.258. Epub 2018 Jan 16.

Abstract

Climatic change in the last few decades has had a widespread impact on both natural and human systems, observable on all continents. Ecological and environmental models using climatic data often rely on gridded data, such as WorldClim. The main aim of this study was to devise and evaluate a computationally efficient approach to produce new high resolution (100m) estimates of current and future climatic variables to be used at the national and regional scale. The test area was Great Britain, where local data are available and of good quality. Present and future climate surfaces were produced. For the present, the approach involved the integration, via spatial interpolation, of local climate information and WorldClim to reduce bias. For future climate scenarios the approach involved spatially downscaling of WorldClim (1km) to a finer resolution of 100m. The main advantages of the proposed approach are: 1. finer resolution, 2. locally adapted to the study area with use of higher number of meteorological stations and improved accuracy and bias, and 3. computationally efficient while making use of the existing resources provided by WorldClim. Two applications were presented to illustrate the practical consequences of improvements obtained with this method. The first is a measure of rainfall intensity, i.e. the R-factor, widely applied in erosion and catchment-scale studies. The second is an application to species distribution modelling, involving a range of bioclimatic variables. The results highlighted the importance of considering the spatial variability and structure of the data integrated in the modelling, and using data adapted to the geographical extent of the analysis, whenever possible. The results of the applications showed the advantage of using enhanced climatic data in applications such as the estimation of soil erosion, species range shift, carbon stocks and the provision of ecosystem services.

Keywords: Bioclimatic variables; Climate scenarios; Ecosystem services; Geostatistics.