Fusing Hyperspectral and Multispectral Images via Coupled Sparse Tensor Factorization

IEEE Trans Image Process. 2018 May 15. doi: 10.1109/TIP.2018.2836307. Online ahead of print.

Abstract

Fusing a low spatial resolution hyperspectral image (LR-HSI) with a high spatial resolution multispectral image (HR-MSI) to obtain a high spatial resolution hyperspectral image (HR-HSI) has attracted increasing interest in recent years. In this paper, we propose a coupled sparse tensor factorization (CSTF) based approach for fusing such images. In the proposed CSTF method, we consider an HR-HSI as a three-dimensional tensor and redefine the fusion problem as the estimation of a core tensor and dictionaries of the three modes. The high spatial-spectral correlations in the HR-HSI are modeled by incorporating a regularizer which promotes sparse core tensors. The estimation of the dictionaries and the core tensor are formulated as a coupled tensor factorization of the LR-HSI and of the HR-MSI. Experiments on two remotely sensed HSIs demonstrate the superiority of the proposed CSTF algorithm over current state-of-the-art HSI-MSI fusion approaches.