Temperature-Dependent Evolution of Crystallographic and Domain Structures in (K,Na,Li)(Ta,Nb)O3 Piezoelectric Single Crystals

IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Sep;65(9):1508-1516. doi: 10.1109/TUFFC.2018.2844801. Epub 2018 Jun 7.

Abstract

(K,Na)NbO3-based ferroelectric single crystals have recently undergone a substantial development, resulting in improved crystal quality and large piezoelectric coefficients, exceeding 700 pC/N, over a broad temperature range. However, further development necessitates a detailed understanding of the mechanisms defining the domain structure and its temperature evolution. This paper presents the investigation into the crystallographic structure and domain configurations of a (K,Na,Li)(Ta,Nb)O3 single crystal over a broad temperature range. The crystal was grown by the submerged-seed solution growth technique and investigated using in situ transmission electron microscopy, X-ray diffraction, dielectric measurements, and polarized light microscopy. The lattice distortion, structural phase transitions, and domain configurations are reported. A transition from the lamellar orthorhombic to the rectangular tetragonal domain structure is observed upon heating. Moreover, the milky optical appearance of the crystal was investigated and found to result from the presence of regions with different domain configurations and domain sizes. The formation of these regions is related to the growth defects, which govern the domain formation when cooling below the Curie temperature.

Publication types

  • Research Support, Non-U.S. Gov't