Carbon trading, co-pollutants, and environmental equity: Evidence from California's cap-and-trade program (2011-2015)

PLoS Med. 2018 Jul 10;15(7):e1002604. doi: 10.1371/journal.pmed.1002604. eCollection 2018 Jul.

Abstract

Background: Policies to mitigate climate change by reducing greenhouse gas (GHG) emissions can yield public health benefits by also reducing emissions of hazardous co-pollutants, such as air toxics and particulate matter. Socioeconomically disadvantaged communities are typically disproportionately exposed to air pollutants, and therefore climate policy could also potentially reduce these environmental inequities. We sought to explore potential social disparities in GHG and co-pollutant emissions under an existing carbon trading program-the dominant approach to GHG regulation in the US and globally.

Methods and findings: We examined the relationship between multiple measures of neighborhood disadvantage and the location of GHG and co-pollutant emissions from facilities regulated under California's cap-and-trade program-the world's fourth largest operational carbon trading program. We examined temporal patterns in annual average emissions of GHGs, particulate matter (PM2.5), nitrogen oxides, sulfur oxides, volatile organic compounds, and air toxics before (January 1, 2011-December 31, 2012) and after (January 1, 2013-December 31, 2015) the initiation of carbon trading. We found that facilities regulated under California's cap-and-trade program are disproportionately located in economically disadvantaged neighborhoods with higher proportions of residents of color, and that the quantities of co-pollutant emissions from these facilities were correlated with GHG emissions through time. Moreover, the majority (52%) of regulated facilities reported higher annual average local (in-state) GHG emissions since the initiation of trading. Neighborhoods that experienced increases in annual average GHG and co-pollutant emissions from regulated facilities nearby after trading began had higher proportions of people of color and poor, less educated, and linguistically isolated residents, compared to neighborhoods that experienced decreases in GHGs. These study results reflect preliminary emissions and social equity patterns of the first 3 years of California's cap-and-trade program for which data are available. Due to data limitations, this analysis did not assess the emissions and equity implications of GHG reductions from transportation-related emission sources. Future emission patterns may shift, due to changes in industrial production decisions and policy initiatives that further incentivize local GHG and co-pollutant reductions in disadvantaged communities.

Conclusions: To our knowledge, this is the first study to examine social disparities in GHG and co-pollutant emissions under an existing carbon trading program. Our results indicate that, thus far, California's cap-and-trade program has not yielded improvements in environmental equity with respect to health-damaging co-pollutant emissions. This could change, however, as the cap on GHG emissions is gradually lowered in the future. The incorporation of additional policy and regulatory elements that incentivize more local emission reductions in disadvantaged communities could enhance the local air quality and environmental equity benefits of California's climate change mitigation efforts.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Air Pollution / adverse effects*
  • Air Pollution / legislation & jurisprudence*
  • Air Pollution / prevention & control
  • California
  • Carbon / adverse effects*
  • Climate Change
  • Environmental Monitoring / legislation & jurisprudence*
  • Government Regulation
  • Greenhouse Effect / legislation & jurisprudence
  • Greenhouse Effect / prevention & control
  • Greenhouse Gases / adverse effects
  • Health Status
  • Humans
  • Inhalation Exposure / adverse effects*
  • Inhalation Exposure / legislation & jurisprudence*
  • Inhalation Exposure / prevention & control
  • Particulate Matter / adverse effects*
  • Program Evaluation
  • Residence Characteristics*
  • Risk Assessment
  • Risk Factors
  • Social Determinants of Health / legislation & jurisprudence
  • Time Factors

Substances

  • Greenhouse Gases
  • Particulate Matter
  • Carbon

Grants and funding

Portions of the work discussed in this paper were funded by the California Office of Environmental Health Hazard Assessment (https://oehha.ca.gov/; #16-E0012-1; RMF and LC) and by the Institute for New Economic Thinking (https://www.ineteconomics.org/; #INO15-00028; MP). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.