Volumetric Feature-Based Classification and Visibility Analysis for Transfer Function Design

IEEE Trans Vis Comput Graph. 2018 Dec;24(12):3253-3267. doi: 10.1109/TVCG.2017.2776935. Epub 2017 Nov 24.

Abstract

Transfer function (TF) design is a central topic in direct volume rendering. The TF fundamentally translates data values into optical properties to reveal relevant features present in the volumetric data. We propose a semi-automatic TF design scheme which consists of two steps: First, we present a clustering process within 1D/2D TF domain based on the proximities of the respective volumetric features in the spatial domain. The presented approach provides an interactive tool that aids users in exploring clusters and identifying features of interest (FOI). Second, our method automatically generates a TF by iteratively refining the optical properties for the selected features using a novel feature visibility measurement. The proposed visibility measurement leverages the similarities of features to enhance their visibilities in DVR images. Compared to the conventional visibility measurement, the proposed feature visibility is able to efficiently sense opacity changes and precisely evaluate the impact of selected features on resulting visualizations. Our experiments validate the effectiveness of the proposed approach by demonstrating the advantages of integrating feature similarity into the visibility computations. We examine a number of datasets to establish the utility of our approach for semi-automatic TF design.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.