Murine models based on acute myeloid leukemia-initiating stem cells xenografting

World J Stem Cells. 2018 Jun 26;10(6):57-65. doi: 10.4252/wjsc.v10.i6.57.

Abstract

Acute myeloid leukemia (AML) is an aggressive malignant disease defined by abnormal expansion of myeloid blasts. Despite recent advances in understanding AML pathogenesis and identifying their molecular subtypes based on somatic mutations, AML is still characterized by poor outcomes, with a 5-year survival rate of only 30%-40%, the majority of the patients dying due to AML relapse. Leukemia stem cells (LSC) are considered to be at the root of chemotherapeutic resistance and AML relapse. Although numerous studies have tried to better characterize LSCs in terms of surface and molecular markers, a specific marker of LSC has not been found, and still the most universally accepted phenotypic signature remains the surface antigens CD34+CD38- that is shared with normal hematopoietic stem cells. Animal models provides the means to investigate the factors responsible for leukemic transformation, the intrinsic differences between secondary post-myeloproliferative neoplasm AML and de novo AML, especially the signaling pathways involved in inflammation and hematopoiesis. However, AML proved to be one of the hematological malignancies that is difficult to engraft even in the most immunodeficient mice strains, and numerous ongoing attempts are focused to develop "humanized mice" that can support the engraftment of LSC. This present review is aiming to introduce the field of AML pathogenesis and the concept of LSC, to present the current knowledge on leukemic blasts surface markers and recent attempts to develop best AML animal models.

Keywords: Acute myeloid leukemia; Antigen markers; Leukemia-initiating stem cells; Murine models; Xenografts.

Publication types

  • Review