Resistive switching control for conductive Si-nanocrystals embedded in Si/SiO2 multilayers

Nanotechnology. 2018 Sep 28;29(39):395203. doi: 10.1088/1361-6528/aad24d. Epub 2018 Jul 10.

Abstract

In this paper, we report on the enhanced control of resistive switching in multilayer Si/SiO2 structures, which permit the formation of Si nanocrystals with a typical size of 5.88 nm and overall good shape homogeneity. The deposition of a different number of Si and SiO2 bilayers (6, 8 and 10) allowed control of SET/RESET voltages in negative bias ranges 4.5-10 V and 6.3-13 V for six- and ten-bilayer devices, respectively. The corresponding resistance ratio between ON/OFF states varied in the ranges 107-105 for the aforementioned number of bilayers. Based on the result of XPS measurements, we suggest that the resistive switching in the studied system occurs due to the formation and annihilation of Si-Si and Si-O bonds, which serve as conductive pathways and isolating material, respectively.