Design, fabrication, and implantation of tube-shaped devices for the treatment of salivary duct diseases

Bioimpacts. 2018;8(2):91-98. doi: 10.15171/bi.2018.11. Epub 2017 Jan 14.

Abstract

Introduction: Starch-based materials were designed using a special extrusion die in order to obtain a tube-shaped device for application to salivary duct treatment in the field of endoscopy, i.e., sialendoscopy . Methods: Extrusion process was used to produce starch tubes. Mechanical properties of the dry tube before implantation were determined using an axial compression test. A finite element study was carried out to simulate the behavior of the hydrated tube under external axial pressure. Hydrolysis of these devices in a simulated salivary solution was studied, as well as its glycerol kinetics release. An animal short-term implantation model for salivary ducts was proposed as a feasibility study for starch tube-shaped devices. Results: A continuous production of regular and size-controlled tubes was obtained. The very small diameter obtained, less than 2 mm, corresponds to the requirement of being insertable in a human salivary duct using sialendoscopy guidewire. Finite element analysis showed that the starch tube can still support an external pressure higher than 0.2 MPa without irreversible damage. After 4 days of implantation, the host response is encouraging and the inflammatory response for this type of procedure remains normal. Conclusion: These devices were adapted to sialendoscopic guidewires and able to be implanted in the salivary ducts of pigs. If a longer lasting tube is required, the crystallinity of the starch material should be improved.

Keywords: Degradable device; Extrusion; Sialendoscopy; Starch; Tube.