Nanotube and poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) composite film for the electrode applications in organic thin-film transistor and dye-sensitized solar cells

Nanotechnology. 2018 Sep 28;29(39):395704. doi: 10.1088/1361-6528/aad15a. Epub 2018 Jul 5.

Abstract

In this study, composite films made of coiled carbon nanotubes (CCNTs) and poly(3,4-ethylenedioxythiophene) polymerized with poly(4-styrenesulfonate) (PEDOT:PSS) were fabricated with different composition ratios. The variations in film properties (including surface morphology, work function, and electrical conductivity) in accordance with the amount of CCNT dosing were investigated. Subsequently, through HCl-methanol treatment, we achieved a significant enhancement in electrical conductivity with little damage to the CCNT features. The characteristics of CCNT/PEDOT:PSS composite film are generally comparable to those of PEDOT:PSS film, and some of them, such as catalytic activity and work function, are significantly higher. On the basis of these versatile features, the CCNT/PEDOT:PSS composite films exhibit excellent performance as source/drain electrode in organic thin-film transistors and as catalytic counter electrode in dye-sensitized solar cells.