High-Performance Limiting Current Oxygen Sensor Comprised of Highly Active La0.75Sr0.25Cr0.5Mn0.5O₃ Electrode

Sensors (Basel). 2018 Jul 4;18(7):2155. doi: 10.3390/s18072155.

Abstract

Zirconia-based limiting current oxygen sensor gains considerable attention, due to its high-performance in improving the combustion efficiency of fossil fuels and reducing the emission of exhaust gases. Nevertheless, the Pt electrode is frequently used in the oxygen sensor, therefore, it restrains the broader application due to the high cost. Quite recently, La0.75Sr0.25Cr0.5Mn0.5O₃ (LSCM) has been reported to be highly active to catalyze oxygen reduction. Herein, with the intention of replacing the frequently used Pt, we studied the practicability of adapting the LSCM to zirconia-based limiting current oxygen sensor. Through comparing the electrocatalytic activity of LSCM and Pt, it is confirmed that LSCM gave analogous oxygen reactivity with that of the Pt. Then, limiting the current oxygen sensors comprised of LSCM or Pt are fabricated and their sensing behavior to oxygen in the range of 2⁻25% is evaluated. Conclusively, quick response/recovery rate (within 7s), linear relationship, and high selectivity (against 5% CO₂ and H₂O) in sensing oxygen are observed for the sensors, regardless of the sensing materials (LSCM or Pt) that are used in the sensor. Particularly, identical sensing characteristics are observed for the sensors consisting of LSCM or Pt, indicating the practicability of replacing the Pt electrode by adapting the LSCM electrode to future zirconia-based oxygen sensors.

Keywords: limiting current oxygen sensor; perovskite crystal phase; zirconia-based.