Antibacterial Performance of TiCaPCON Films Incorporated with Ag, Pt, and Zn: Bactericidal Ions Versus Surface Microgalvanic Interactions

ACS Appl Mater Interfaces. 2018 Jul 25;10(29):24406-24420. doi: 10.1021/acsami.8b06671. Epub 2018 Jul 13.

Abstract

It is very important to prevent bacterial colonization at the early postoperative stages. There are four major strategies and their corresponding types of antibacterial surfaces specifically designed to fight infection: bactericide release, anti-adhesion, pH-sensitive, and contact-killing. Herein, we aimed at determining the antibacterial efficiency of different types of bactericidal ions and revealing the possible contribution of surface microgalvanic effects arising from a potential difference on heterogeneous surfaces. We considered five types of TiCaPCON films, with Ag, Zn, Pt, Ag + Zn, and Pt + Zn nanoparticles (NPs) on their surface. The Ag-modified film demonstrated a pronounced antibacterial effect at a very low Ag ion concentration of 0.11 ppb in physiological solution that was achieved already after 3 h of immersion in Escherichia coli ( E. coli) bacterial culture. The Zn-containing sample also showed a noticeable antibacterial effect against E. coli and Staphylococcus aureus ( S. aureus) strains, wherein the concentration of Zn ions was 2 orders of magnitude higher (15 ppb) compared with the Ag ions. The presence of Ag NPs accelerated the leaching of Zn ion out of the TiCaPCON-Ag-Zn film, but no synergistic effect of the simultaneous presence of the two bactericidal components was observed. After the incubation of the samples with Ag, Zn, and Ag + Zn NPs in E. coli and S. aureus suspensions for 24 and 8 h, respectively, all bacterial cells were completely inactivated. The Pt-containing film showed a very low Pt ion release, and therefore the contribution of this type of ions to the total bactericidal effect could be neglected. The results of the electrochemical studies and Kelvin probe force microscopy indicated that microgalvanic couples were formed between the Pt NPs and the TiCaPCON film, but no noticeable antibacterial effect against either E. coli or S. aureus strains was observed. All ion-modified samples provided good osteoblastic cell attachment, spreading, and proliferation and therefore were concluded to be nontoxic for cells. In addition, the TiCaPCON films with Ag, Pt, and Zn NPs on their surface demonstrated good osteoconductive characteristics.

Keywords: Kelvin probe force microscopy; antibacterial films; bactericide ion release; cytocompatibility; electrochemical behavior; microgalvanic effect.

MeSH terms

  • Anti-Bacterial Agents / chemistry*
  • Escherichia coli
  • Ions
  • Silver
  • Staphylococcus aureus
  • Titanium
  • Zinc

Substances

  • Anti-Bacterial Agents
  • Ions
  • Silver
  • Titanium
  • Zinc