Mapping the Inhomogeneity in Plasmonic Catalysis on Supported Gold Nanoparticles Using Surface-Enhanced Raman Scattering Microspectroscopy

Anal Chem. 2018 Aug 7;90(15):9199-9205. doi: 10.1021/acs.analchem.8b01701. Epub 2018 Jul 13.

Abstract

The characterization of a catalyst often occurs by averaging over large areas of the catalyst material. On the other hand, optical probing is easily achieved at a resolution at the micrometer scale, specifically in microspectroscopy. Here, using surface-enhanced Raman scattering (SERS) mapping of larger areas with micrometer-sized spots that contain tens to hundreds of supported gold nanoparticles each, the photoinduced dimerization of p-aminothiophenol (PATP) to 4,4'-dimercaptoazobenzene (DMAB) was monitored. The mapping data reveal an inhomogeneous distribution of catalytic activity in the plasmon-catalyzed reaction in spite of a very homogeneous plasmonic enhancement of the optical signals in SERS. The results lead to the conclusion that only a fraction of the nanostructures may be responsible for a high catalytic activity. The high spot-to-spot variation in catalytic activity is also demonstrated for DMAB formation by the plasmon-catalyzed reduction from p-nitrothiophenol (PNTP) and confirms that an improvement of the accuracy and reproducibility in the characterization of catalytic reactions can be achieved by microspectroscopic probing of many positions. Using SERS micromapping during the incubation of PATP, we demonstrate that the reaction occurs during the incubation process and is influenced by different parameters, leading to the conclusion of dimerization in a gold-catalyzed, nonphotochemical reaction as an alternative to the plasmon-catalyzed process. The results have implications for the future characterization of new catalyst materials as well as for optical sensing using plasmonic materials.

Publication types

  • Research Support, Non-U.S. Gov't