Host quality induces phenotypic plasticity in a wing polyphenic insect

Proc Natl Acad Sci U S A. 2018 Jul 17;115(29):7563-7568. doi: 10.1073/pnas.1721473115. Epub 2018 Jul 2.

Abstract

Food quality is a critical environmental condition that impacts an animal's growth and development. Many insects facing this challenge have evolved a phenotypically plastic, adaptive response. For example, many species of insect exhibit facultative wing growth, which reflects a physiological and evolutionary trade-off between dispersal and reproduction, triggered by environmental conditions. What the environmental cues are and how they are transduced to produce these alternative forms, and their associated ecological shift from dispersal to reproduction, remains an important unsolved problem in evolutionary ecology. In this study, we investigated the role that host quality has on the induction of wing development in a wing polyphenic insect exhibiting strong tradeoffs in investment between dispersal and reproduction, the brown planthopper, a serious rice pest in Asia. As rice plants grow, the short-winged brown planthopper dominates the population, but a shift occurs as the plants mature and senesce in the field such that long-winged brown planthoppers emerge and migrate. It remains unknown how changes in the rice plant induce development of the long-winged morph, despite recent discoveries on the role of the insulin and JNK signaling pathways in wing development. We found that by mimicking the glucose concentration of senescing rice plants, we significantly increased the proportion of long-winged female planthoppers. The effects of glucose on wing morph are additive with previously described effects of density. Our results show that host quality both directly regulates phenotypic plasticity and interacts with other factors such as density to produce the appropriate phenotype for specific environmental conditions.

Keywords: brown planthopper; host quality; insulin signaling pathway; phenotypic plasticity; wing dimorphism.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Biological Evolution*
  • Female
  • Hemiptera / anatomy & histology
  • Hemiptera / physiology*
  • Host-Parasite Interactions / physiology*
  • Male
  • Oryza / parasitology*
  • Wings, Animal / anatomy & histology
  • Wings, Animal / physiology*