Ex Vivo Shear-Wave Elastography of Axillary Lymph Nodes to Predict Nodal Metastasis in Patients with Primary Breast Cancer

J Breast Cancer. 2018 Jun;21(2):190-196. doi: 10.4048/jbc.2018.21.2.190. Epub 2018 Jun 20.

Abstract

Purpose: There is still a clinical need to easily evaluate the metastatic status of lymph nodes during breast cancer surgery. We hypothesized that ex vivo shear-wave elastography (SWE) would predict precisely the presence of metastasis in the excised lymph nodes.

Methods: A total of 63 patients who underwent breast cancer surgery were prospectively enrolled in this study from May 2014 to April 2015. The excised axillary lymph nodes were examined using ex vivo SWE. Metastatic status was confirmed based on the final histopathological diagnosis of the permanent section. Lymph node characteristics and elasticity values measured by ex vivo SWE were assessed for possible association with nodal metastasis.

Results: A total of 274 lymph nodes, harvested from 63 patients, were examined using ex vivo SWE. The data obtained from 228 of these nodes from 55 patients were included in the analysis. Results showed that 187 lymph nodes (82.0%) were nonmetastatic and 41 lymph nodes (18.0%) were metastatic. There was significant difference between metastatic and nonmetastatic nodes with respect to the mean (45.4 kPa and 17.7 kPa, p<0.001) and maximum (55.3 kPa and 23.2 kPa, p<0.001) stiffness. The elasticity ratio was higher in the metastatic nodes (4.36 and 1.57, p<0.001). Metastatic nodes were significantly larger than nonmetastatic nodes (mean size, 10.5 mm and 7.5 mm, p<0.001). The size of metastatic nodes and nodal stiffness were correlated (correlation coefficient of mean stiffness, r=0.553). The area under curve of mean stiffness, maximum stiffness, and elasticity ratio were 0.794, 0.802, and 0.831, respectively.

Conclusion: Ex vivo SWE may be a feasible method to predict axillary lymph node metastasis intraoperatively in patients undergoing breast cancer surgery.

Keywords: Axilla; Breast neoplasms; Elasticity imaging techniques; Lymphatic metastasis.