Amplitude-phase cross talk as a deterioration factor of signal-to-noise ratio in phase-detection noise-cancellation technique for spectral pump/probe measurements and compensation of the amplitude-phase cross talk

Rev Sci Instrum. 2018 Jun;89(6):063111. doi: 10.1063/1.5010370.

Abstract

Noise cancellation of the light source is an important method to enhance the signal-to-noise ratio (SNR) and facilitate high-speed detection in pump/probe measurements. We developed a method to eliminate the noise for the multichannel spectral pump/probe measurements with a spectral dispersion of a white probe pulse light. In this method, the sample-induced intensity modulation is converted to the phase modulation of the pulse repetition irrespective of the intensity noise of the light source. The SNR is enhanced through the phase detection of the observed signal with the signal synchronized to the pulse repetition serving as the phase reference (synchronized signal). However, the shot-noise limited performance is not achieved with an intense probe light. In this work, we demonstrate that the performance limitation below the shot noise limit is caused by the amplitude-phase cross talk. It converts the amplitude noise into the phase noise and is caused by the space-charge effect in the photodetector, the reverse bias voltage drop across the load impedance, and the phase detection circuit. The phase delay occurs with an intense light at a PIN photodiode, whereas the phase is advanced in an avalanche photodiode. Although the amplitude distortion characteristics also reduce the performance, the distortion effect is equivalent to the amplitude-phase cross talk. We also propose possible ways to compensate the cross talk effect by using the phase modulation of the synchronized signal for the phase detection based on the instantaneous amplitude.