Mouse-Derived Gastric Organoid and Immune Cell Co-culture for the Study of the Tumor Microenvironment

Methods Mol Biol. 2018:1817:157-168. doi: 10.1007/978-1-4939-8600-2_16.

Abstract

The interaction between the receptor, programmed cell death protein 1 (PD-1) and ligand, programmed cell death 1 (PD-L1) is known to inhibit CD8+ cytotoxic T lymphocyte proliferation, survival, and effector function. The result of this interaction leads to evasion of immune surveillance by tumors and subsequently cancer cell proliferation. Immunotherapy via PD-L1 blockade is used for a variety of malignancies, yet the prognostic value of immune checkpoint inhibition for the treatment of gastric cancer remains controversial. Thus, preclinical models that would predict the efficacy of such therapy in a subgroup of gastric cancer patients would be an advancement in the personalized treatment of this disease. Three-dimensional organoid cultures have not only been used to investigate the mechanisms regulating development and disease, but have also been used for high-throughput drug screening for targeted personalized therapy. Here we present the methodology for the co-culture of mouse-derived gastric cancer organoids with autologous immune cells specifically for the study of PD-L1/PD-1 interactions within the tumor microenvironment in vitro.

Keywords: Cytotoxic T lymphocytes; Dendritic cells; PD-1; PD-L1.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • B7-H1 Antigen / metabolism
  • CD8-Positive T-Lymphocytes / cytology*
  • CD8-Positive T-Lymphocytes / metabolism
  • Cell Proliferation
  • Cells, Cultured
  • Coculture Techniques / methods*
  • Drug Screening Assays, Antitumor
  • Gastric Mucosa / cytology*
  • Gastric Mucosa / metabolism
  • Mice
  • Organoids / cytology*
  • Organoids / metabolism
  • Programmed Cell Death 1 Receptor / metabolism
  • Tumor Microenvironment

Substances

  • B7-H1 Antigen
  • Cd274 protein, mouse
  • Pdcd1 protein, mouse
  • Programmed Cell Death 1 Receptor