Challenges in Transitioning Cocrystals from Bench to Bedside: Dissociation in Prototype Drug Product Environment

Mol Pharm. 2018 Aug 6;15(8):3297-3307. doi: 10.1021/acs.molpharmaceut.8b00340. Epub 2018 Jul 16.

Abstract

Tablets containing a theophylline-glutaric acid (TG) cocrystal dissociated rapidly forming crystalline theophylline (20-30%), following storage at 40 °C/75% RH for 2 weeks. Control tablets of TG cocrystal containing no excipients were stable under the same conditions. The dissociation reaction was water-mediated, and the theophylline concentration (the dissociation product), monitored by synchrotron X-ray diffractometry, was strongly influenced by the formulation composition. Investigation of the binary compacts of the TG cocrystal with each excipient revealed the influence of excipient properties (hydrophilicity, ionizability) on cocrystal stability, providing mechanistic insights into a dissociation reaction. Ionizable excipients with a strong tendency to sorb water, for example, sodium starch glycolate and croscarmellose sodium, caused pronounced dissociation. Microcrystalline cellulose (MCC), while a neutral but hydrophilic excipient, also enabled solution-mediated cocrystal dissociation in intact tablets. Magnesium stearate, an ionizable but hydrophobic excipient, interacted with the cocrystal to form a hygroscopic product. The interaction is believed to be initiated in the disordered cocrystal-excipient particle interface. In contrast, the cocrystal was stable in the presence of lactose, a neutral excipient with no tendency to sorb water. The risk of unintended cocrystal dissociation can be mitigated by avoiding contact with water both during processing and storage.

Keywords: cocrystal dissociation, cocrystal stability; drug product; excipients; magnesium stearate; microenvironmental acidity; synchrotron X-ray diffractometry; tablet formulation.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Chemistry, Pharmaceutical
  • Crystallization*
  • Drug Compounding / methods*
  • Drug Storage
  • Excipients / chemistry*
  • Tablets
  • Theophylline / chemistry*
  • Water / chemistry
  • Wettability
  • X-Ray Diffraction

Substances

  • Excipients
  • Tablets
  • Water
  • Theophylline