Detection of Foodborne Pathogens by Surface Enhanced Raman Spectroscopy

Front Microbiol. 2018 Jun 12:9:1236. doi: 10.3389/fmicb.2018.01236. eCollection 2018.

Abstract

Food safety has become an important public health issue in both developed and developing countries. However, as the foodborne illnesses caused by the pollution of foodborne pathogens occurred frequently, which seriously endangered the safety and health of human beings. More importantly, the traditional techniques, such as PCR and enzyme-linked immunosorbent assay, are accurate and effective, but their pretreatments are complex and time-consuming. Therefore, how to detect foodborne pathogens quickly and sensitively has become the key to control food safety. Because of its sensitivity, rapidity, and non-destructive damage to the sample, the surface enhanced Raman scattering (SERS) is considered to be a powerful testing technology that is widely used to different fields. This review aims to give a systematic and comprehensive understanding of SERS for rapid detection of pathogen bacteria. First, the related concepts of SERS are stated, such as its work principal, active substrate, and biochemical origins of the detection of bacteria by SERS. Then the latest progress and applications in food safety, from detection and characterization of targets in label-free method to label method, is summarized. The advantages and limitations of different SERS substrates and methods are discussed. Finally, there are still several hurdles for the further development of SERS techniques into real-world applications. This review comes up with the perspectives on the future trends of the SERS technique in the field of foodborne pathogens detection and some problems to be solved urgently. Therefore, the purpose is mainly to understand the detection of foodborne pathogens and to make further emphasis on the importance of SERS techniques.

Keywords: SERS; food safety; foodborne pathogens; nanoparticles; rapid detection.

Publication types

  • Review