Cataluminescence sensing of carbon disulfide based on CeO2 hierarchical hollow microspheres

Anal Bioanal Chem. 2018 Aug;410(21):5113-5122. doi: 10.1007/s00216-018-1141-4. Epub 2018 Jun 25.

Abstract

Material morphology-dependent cataluminescence (CTL) sensing characteristic and application are presented in this work. Hierarchical hollow microspheres CeO2 were synthesized via the hydrothermal reaction of glucose and N, N-dimethyl-formamide (Glu-DMF). SEM, XRD, TEM, HRTEM and BET were used to characterize the prepared CeO2 materials. Compared with CeO2 cubics (CeO2 Cubs), CeO2 hierarchical hollow microspheres (CeO2 HMs) show an enhanced CTL response to carbon disulfide. The response and recovery times of CeO2 HMs-based CTL sensor towards carbon disulfide are about 8 s and 20 s, respectively. CeO2 HMs exhibits a linear CTL response to carbon disulfide in the concentration range of 0.50~10 μg•mL-1 with an excellent sensitivity and selectivity. These results suggest that CeO2 HMs will be a highly promising CTL sensing material for the detection and monitoring carbon disulfide. Graphical abstract CeO2 hierarchical hollow microspheres (CeO2 HMs) were synthesized via the hydrothermal reaction of glucose and N, N-dimethyl-formamide (Glu-DMF). Meanwhile, the prepared CeO2 HMs shows commendable CTL response towards carbon disulfide. Due to the excellent analytical performance of designed CeO2 HMs-based sensor for carbon disulfide, it has potential application value in various locations.

Keywords: Carbon disulfide; Cataluminescence; CeO2 hierarchical hollow microspheres (CeO2 HMs); Gas sensor.