Exciton-plasmon hybrids for surface catalysis detected by SERS

Nanotechnology. 2018 Sep 14;29(37):372001. doi: 10.1088/1361-6528/aacec4. Epub 2018 Jun 25.

Abstract

Surface plasmons (SPs), in which the free electrons are collectively excited on the metal surface, have been successfully used in chemical analysis and signal detection. Generally, SPs possess two types of decay channels. SPs decay either nonradiatively via the generation of hot electrons or radiatively through re-emitted photons, which can trigger surface chemical reactions when the molecules are adsorbed on the surface of metal nanoparticles. An excitation light with a special wavelength is irradiated on the surface of the plasmonic nanostructure, the strong coupling interaction between electrons and light will then occur on this, and this is followed by the development of a series of unique properties. 2D materials have been a hot topic of research for more than a decade, since graphene was found in 2004. Recently, the combination of graphene with metal NPs has been shown to possess many supernormal advantages, such as high stability and catalytic activity, which have been successfully applied in plasmon-exciton co-driven chemical reactions.