Jasmonic Acid Inhibits Auxin-Induced Lateral Rooting Independently of the CORONATINE INSENSITIVE1 Receptor

Plant Physiol. 2018 Aug;177(4):1704-1716. doi: 10.1104/pp.18.00357. Epub 2018 Jun 22.

Abstract

Plant root systems are indispensable for water uptake, nutrient acquisition, and anchoring plants in the soil. Previous studies using auxin inhibitors definitively established that auxin plays a central role regulating root growth and development. Most auxin inhibitors affect all auxin signaling at the same time, which obscures an understanding of individual events. Here, we report that jasmonic acid (JA) functions as a lateral root (LR)-preferential auxin inhibitor in Arabidopsis (Arabidopsis thaliana) in a manner that is independent of the JA receptor, CORONATINE INSENSITIVE1 (COI1). Treatment of wild-type Arabidopsis with either (-)-JA or (+)-JA reduced primary root length and LR number; the reduction of LR number was also observed in coi1 mutants. Treatment of seedlings with (-)-JA or (+)-JA suppressed auxin-inducible genes related to LR formation, diminished accumulation of the auxin reporter DR5::GUS, and inhibited auxin-dependent DII-VENUS degradation. A structural mimic of (-)-JA and (+)-coronafacic acid also inhibited LR formation and stabilized DII-VENUS protein. COI1-independent activity was retained in the double mutant of transport inhibitor response1 and auxin signaling f-box protein2 (tir1 afb2) but reduced in the afb5 single mutant. These results reveal JAs and (+)-coronafacic acid to be selective counter-auxins, a finding that could lead to new approaches for studying the mechanisms of LR formation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arabidopsis / genetics
  • Arabidopsis / growth & development
  • Arabidopsis / metabolism*
  • Arabidopsis Proteins / genetics
  • Arabidopsis Proteins / metabolism*
  • Cyclopentanes / metabolism*
  • Cyclopentanes / pharmacology
  • Gene Expression Regulation, Plant / drug effects
  • Indenes / pharmacology
  • Indoleacetic Acids / metabolism*
  • Oxylipins / metabolism*
  • Oxylipins / pharmacology
  • Plant Growth Regulators / metabolism
  • Plant Roots / genetics
  • Plant Roots / growth & development*
  • Plants, Genetically Modified
  • Receptors, Cell Surface / genetics
  • Receptors, Cell Surface / metabolism
  • Seedlings / drug effects
  • Seedlings / growth & development
  • Seedlings / metabolism
  • Signal Transduction

Substances

  • AFB5 protein, Arabidopsis
  • Arabidopsis Proteins
  • COI1 protein, Arabidopsis
  • Cyclopentanes
  • Indenes
  • Indoleacetic Acids
  • Oxylipins
  • Plant Growth Regulators
  • Receptors, Cell Surface
  • coronafacic acid
  • jasmonic acid