Understanding Intratumor Heterogeneity and Evolution in NSCLC and Potential New Therapeutic Approach

Cancers (Basel). 2018 Jun 22;10(7):212. doi: 10.3390/cancers10070212.

Abstract

Advances in innovative technology, including next-generation sequencing, have allowed comprehensive genomic analysis and the elucidation of the genomic aspect of intratumor heterogeneity (ITH). Moreover, models of the evolution of the cancer genome have been proposed by integrating these analyses. Cancer has been considered to accumulate genetic abnormalities for clonal evolution in time and space, and these evolutionary patterns vary depending on the organs of primary sites. Selection pressure is an important determinant of such evolutionary patterns. With weak selection pressure, more diverse clones coexist, and heterogeneity increases. Heterogeneity is maximized when there is no selection pressure; in other words, neutral evolution occurs. Some types of cancer such as lung cancer evolve in conditions that have maintained close to neutral evolution and produce diverse variants. This ITH is a key factor contributing to the lethal outcome of cancer, therapeutic failure, and drug resistance. This factor reaffirms the complexity and subtle adaptability of cancer. It is expected that further understanding of ITH and cancer genome evolution will facilitate the development of new therapeutic strategies to overcome ITH.

Keywords: cancer genome evolution; intratumor heterogeneity; targeted therapy.

Publication types

  • Review