Microstructure and Properties of Porous High-N Ni-Free Austenitic Stainless Steel Fabricated by Powder Metallurgical Route

Materials (Basel). 2018 Jun 22;11(7):1058. doi: 10.3390/ma11071058.

Abstract

Porous high-N Ni-free austenitic stainless steel was fabricated by a powder metallurgical route. The microstructure and properties of the prepared porous austenitic stainless steel were studied. Results reveal that the duplex stainless steel transforms into austenitic stainless steel after nitridation sintering for 2 h. The prepared high-N stainless steel consists of γ-Fe matrix and FCC structured CrN. Worm-shaped and granular-shaped CrN precipitates were observed in the prepared materials. The orientation relationship between CrN and austenite matrix is [011]CrN//[011]γ and (-1-11)CrN//(1-11)γ. Results show that the as-fabricated porous high-nitrogen austenitic stainless steel features a higher mechanical property than common stainless steel foam. Both compressive strength and Young’s modulus decrease with an increase in porosity. The 3D morphology of the prepared porous materials presents good pore connectivity. The prepared porous high-N Ni-free austenitic stainless steel has superior pore connectivity, a good combination of compressive strength and ductility, and low elastic modulus, which makes this porous high-N Ni-free austenitic stainless steel very attractive for metal foam applications.

Keywords: crystallographic feature; elastic modulus; microstructure; nitrides; porous morphology.