Uranium(VI) Complexes with a Calix[4]arene-Based 8-Hydroxyquinoline Ligand: Thermodynamic and Structural Characterization Based on Calorimetry, Spectroscopy, and Liquid-Liquid Extraction

ChemistryOpen. 2018 Jun 19;7(6):467-474. doi: 10.1002/open.201800085. eCollection 2018 Jun.

Abstract

The environmental aspects of ore processing and waste treatment call for an optimization of applied technologies. There, understanding of the structure and complexation mechanism on a molecular scale is indispensable. Here, the complexation of UVI with a calix[4]arene-based 8-hydroxyquinoline ligand was investigated by applying a wide range of complementary methods. In solution, the formation of two complex species was proven with stability constants of log ß1:1=5.94±0.02 and log ß2:1=6.33±0.01, respectively. The formation of the 1:1 complex was found to be enthalpy driven [ΔH1:1=(-71.5±10.0) kJ mol-1; TΔS1:1=(-37.57±10.0) kJ mol-1], whereas the second complexation step was found to be endothermic and entropy driven [ΔH2:1=(32.8±4.0) kJ mol-1; TΔS2:1=(68.97±4.0) kJ mol-1]. Moreover, the molecular structure of [UO2(H6L)(NO3)](NO3) (1) was determined by single-crystal X-ray diffraction. Concluding, radiotoxic UVI was separated from a EuIII-containing solution by the calix[4]arene-based ligand in solvent extractions.

Keywords: UV/Vis spectroscopy; calixarenes; chelates; liquid–liquid extraction; uranium.