Mechanism of chloride inhibition of bilirubin oxidases and its dependence on potential and pH

ACS Catal. 2017 Jun 2;7(6):3916-3923. doi: 10.1021/acscatal.7b01286. Epub 2017 Apr 27.

Abstract

Bilirubin oxidases (BODs) belong to the multi-copper oxidase (MCO) family and efficiently reduce O2 at neutral pH and in physiological conditions where chloride concentrations are over 100 mM. BODs were consequently considered to be Cl- resistant contrary to laccases. However, there has not been a detailed study on the related effect of chloride and pH on the redox state of immobilized BODs. Here, we investigate by electrochemistry the catalytic mechanism of O2 reduction by the thermostable Bacillus pumilus BOD immobilized on carbon nanofibers in the presence of NaCl. The addition of chloride results in the formation of a redox state of the enzyme, previously observed for different BODs and laccases, which is only active after a reductive step. This behavior has not been previously investigated. We show for the first time that the kinetics of formation of this state is strongly dependent on pH, temperature, Cl- concentration and on the applied redox potential. UV-visible spectroscopy allows us to correlate the inhibition process by chloride with the formation of the alternative resting form of the enzyme. We demonstrate that O2 is not required for its formation and show that the application of an oxidative potential is sufficient. In addition, our results suggest that the reactivation may proceed thought the T3 β.