Enhanced Differentiation Potential of Primary Human Endometrial Cells Cultured on 3D Scaffolds

Biomacromolecules. 2018 Aug 13;19(8):3343-3350. doi: 10.1021/acs.biomac.8b00635. Epub 2018 Jul 10.

Abstract

Novel approaches for culturing primary human cells in vitro are increasingly needed to study cell and tissue physiology and to grow replacement tissue for regenerative medicine. Conventional 2D monolayer cultures of endometrial epithelial and stromal cells fail to replicate the complex 3D architecture of tissue. A fully synthetic scaffold that mimics the microenvironment of the human endometrium can ultimately provide a robust platform for investigating tissue physiology and, hence, take significant steps toward tackling female infertility and IVF failure. In this work, emulsion-templated porous polymers (known as polyHIPEs) were investigated as scaffolds for the culture of primary human endometrial epithelial and stromal cells (HEECs and HESCs). Infiltration of HEECs and HESCs into cell-seeded polyHIPE scaffolds was assessed by histological studies, and phenotype was confirmed by immunostaining. Confocal microscopy revealed that the morphology of HEECs and HESCs is representative of that found in vivo. RNA sequencing was used to investigate transcriptome differences between cells grown on polyHIPE scaffolds and in monolayer cultures. The differentiation status of HEECs and HESCs grown in polyHIPE scaffolds and in monolayer cultures was further evaluated by monitoring the expression of endometrial marker genes. Our observations suggest that a 3D cell culture model that could approximate native human endometrial architecture and function can be developed using tailored polyHIPE scaffolds.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Differentiation*
  • Cells, Cultured
  • Endometrium / cytology*
  • Epithelial Cells / cytology
  • Epithelial Cells / drug effects
  • Female
  • Humans
  • Polymers / chemistry
  • Polymers / pharmacology*
  • Stromal Cells / cytology
  • Stromal Cells / drug effects
  • Styrenes / chemistry
  • Styrenes / pharmacology*
  • Tissue Scaffolds / adverse effects
  • Tissue Scaffolds / chemistry*

Substances

  • Polymers
  • Styrenes
  • polyHIPE