Epigenetic Optical Mapping of 5-Hydroxymethylcytosine in Nanochannel Arrays

ACS Nano. 2018 Jul 24;12(7):7148-7158. doi: 10.1021/acsnano.8b03023. Epub 2018 Jun 25.

Abstract

The epigenetic mark 5-hydroxymethylcytosine (5-hmC) is a distinct product of active DNA demethylation that is linked to gene regulation, development, and disease. In particular, 5-hmC levels dramatically decline in many cancers, potentially serving as an epigenetic biomarker. The noise associated with next-generation 5-hmC sequencing hinders reliable analysis of low 5-hmC containing tissues such as blood and malignant tumors. Additionally, genome-wide 5-hmC profiles generated by short-read sequencing are limited in providing long-range epigenetic information relevant to highly variable genomic regions, such as the 3.7 Mbp disease-related Human Leukocyte Antigen (HLA) region. We present a long-read, highly sensitive single-molecule mapping technology that generates hybrid genetic/epigenetic profiles of native chromosomal DNA. The genome-wide distribution of 5-hmC in human peripheral blood cells correlates well with 5-hmC DNA immunoprecipitation (hMeDIP) sequencing. However, the long single-molecule read-length of 100 kbp to 1 Mbp produces 5-hmC profiles across variable genomic regions that failed to show up in the sequencing data. In addition, optical 5-hmC mapping shows a strong correlation between the 5-hmC density in gene bodies and the corresponding level of gene expression. The single-molecule concept provides information on the distribution and coexistence of 5-hmC signals at multiple genomic loci on the same genomic DNA molecule, revealing long-range correlations and cell-to-cell epigenetic variation.

Keywords: 5-hydroxymethylcytosine; epigenetics; fluorescence microscopy; methylation; nanochannels; nanotechnology; optical mapping; single-molecule.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 5-Methylcytosine / analogs & derivatives*
  • 5-Methylcytosine / analysis
  • DNA / genetics*
  • Epigenesis, Genetic / genetics*
  • Humans
  • Nanotechnology / instrumentation*
  • Optics and Photonics / methods*

Substances

  • 5-hydroxymethylcytosine
  • 5-Methylcytosine
  • DNA