Diverse effects of degree of urbanisation and forest size on species richness and functional diversity of plants, and ground surface-active ants and spiders

PLoS One. 2018 Jun 19;13(6):e0199245. doi: 10.1371/journal.pone.0199245. eCollection 2018.

Abstract

Urbanisation is increasing worldwide and is regarded a major driver of environmental change altering local species assemblages in urban green areas. Forests are one of the most frequent habitat types in urban landscapes harbouring many native species and providing important ecosystem services. By using a multi-taxa approach covering a range of trophic ranks, we examined the influence of degree of urbanisation and forest size on the species richness and functional diversity of plants, and ground surface-active ants and spiders. We conducted field surveys in twenty-six forests in the urban region of Basel, Switzerland. We found that a species' response to urbanisation varied depending on trophic rank, habitat specificity and the diversity indices used. In plants, species richness decreased with degree of urbanisation, whereas that of both arthropod groups was not affected. However, ants and spiders at higher trophic rank showed greater shifts in species composition with increasing degree of urbanisation, and the percentage of forest specialists in both arthropod groups increased with forest size. Local abiotic site characteristics were also crucial for plant species diversity and species composition, while the structural diversity of both leaf litter and vegetation was important for the diversity of ants and spiders. Our results highlight that even small urban forests can harbour a considerable biodiversity including habitat specialists. Nonetheless, urbanisation directly and indirectly caused major shifts in species composition. Therefore, special consideration needs to be given to vulnerable species, including those with special habitat requirements. Locally adapted management practices could be a step forward to enhance habitat quality in a way to maximize diversity of forest species and thus ensure forest ecosystem functioning; albeit large-scale factors also remain important.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Ants / physiology*
  • Biodiversity
  • Ecosystem*
  • Forests*
  • Humans
  • Plant Physiological Phenomena
  • Spiders / physiology*
  • Switzerland
  • Urbanization

Grants and funding

Stadtgärtnerei Basel (BBaur), Stiftung Emilia Guggenheim-Schnurr (BBraschler), and Basler Stiftung für biologische Forschung (BBraschler) provided funding for the research. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.