Passive activity observation (PAO) method to estimate outdoor thermal adaptation in public space: case studies in Australian cities

Int J Biometeorol. 2020 Feb;64(2):231-242. doi: 10.1007/s00484-018-1570-y. Epub 2018 Jun 18.

Abstract

Outdoor thermal comfort is influenced by people's climate expectations, perceptions and adaptation capacity. Varied individual response to comfortable or stressful thermal environments results in a deviation between actual outdoor thermal activity choices and those predicted by thermal comfort indices. This paper presents a passive activity observation (PAO) method for estimating contextual limits of outdoor thermal adaptation. The PAO method determines which thermal environment result in statistically meaningful changes may occur in outdoor activity patterns, and it estimates thresholds of outdoor thermal neutrality and limits of thermal adaptation in public space based on activity observation and microclimate field measurement. Applications of the PAO method have been demonstrated in Adelaide, Melbourne and Sydney, where outdoor activities were analysed against outdoor thermal comfort indices between 2013 and 2014. Adjusted apparent temperature (aAT), adaptive predicted mean vote (aPMV), outdoor standard effective temperature (OUT_SET), physiological equivalent temperature (PET) and universal thermal comfort index (UTCI) are calculated from the PAO data. Using the PAO method, the high threshold of outdoor thermal neutrality was observed between 24 °C for optional activities and 34 °C for necessary activities (UTCI scale). Meanwhile, the ultimate limit of thermal adaptation in uncontrolled public spaces is estimated to be between 28 °C for social activities and 48 °C for necessary activities. Normalised results indicate that city-wide high thresholds for outdoor thermal neutrality vary from 25 °C in Melbourne to 26 °C in Sydney and 30 °C in Adelaide. The PAO method is a relatively fast and localised method for measuring limits of outdoor thermal adaptation and effectively informs urban design and policy making in the context of climate change.

Keywords: Outdoor thermal comfort; Passive activity observation (PAO); Public life; Thermal adaptation; Urban microclimates.

MeSH terms

  • Acclimatization
  • Australia
  • Cities
  • Microclimate*
  • Temperature
  • Thermosensing*