Synthesis of Magnetic Wood Fiber Board and Corresponding Multi-Layer Magnetic Composite Board, with Electromagnetic Wave Absorbing Properties

Nanomaterials (Basel). 2018 Jun 16;8(6):441. doi: 10.3390/nano8060441.

Abstract

With the rapid growth in the use of wireless electronic devices, society urgently needs electromagnetic wave (EMW) absorbing material with light weight, thin thickness, wide effective absorbing band width, and strong absorption capacity. Herein, the multi-layer magnetic composite boards are fabricated by hot-pressing magnetic fiber boards and normal veneer layer-by-layer. The magnetic fibers obtained using in-situ chemical co-precipitation are used to fabricate magnetic fiber board by hot-pressing. The magnetic wave absorbing capacities of the magnetic fiber boards obtained with 72 h impregnation time exhibit strongest adsorption capacities of −51.01 dB with a thickness of 3.00 mm. It is proved that this outstanding EMW absorption property is due to the strongest dielectric loss, the optimal magnetic loss, and the dipole relaxation polarization. Meanwhile, the EMW absorbing capacities of the corresponding multi-layer composite magnetic board increases from −14.14 dB (3-layer) to −60.16 dB (7-layer). This is due to the generated multi-interfaces between magnetic fiber board and natural wood veneer in the EMW propagation direction, which significantly benefit multireflection and attenuation of the incident waves. The results obtained in this work indicate that natural wood fibers are of great potential in the fabrication of magnetic multi-layer boards treated as EMW absorbers via a low cost, green, and scalable method.

Keywords: co-precipitation; electromagnetic wave absorption; hot-pressing; magnetic board.