Crystal Field Splittings in Lanthanide Complexes: Inclusion of Correlation Effects beyond Second Order Perturbation Theory

J Chem Theory Comput. 2018 Aug 14;14(8):3998-4009. doi: 10.1021/acs.jctc.8b00184. Epub 2018 Jul 3.

Abstract

State-averaged complete active space self-consistent field (CASSCF) calculations and a subsequent spin-orbit calculation mixing the CASSCF wave functions (CASSCF/state-interaction with spin-orbit coupling) is the conventional approach used for ab initio calculations of crystal-field splittings and magnetic properties of lanthanide complexes. However, this approach neglects dynamical correlation. Complete active space second-order perturbation theory (CASPT2) can be used to account for dynamical correlation but suffers from the well-known problems of multireference perturbation theory, e.g., intruder state problems. Variational multireference configuration interaction (MRCI) calculations do not show these problems but are usually not feasible due to the large size of real lanthanide complexes. Here, we present a quasi-local projected internally contracted MRCI approach which makes MRCI calculations of lanthanide complexes feasible and allows assessing the influence of dynamical correlation beyond second-order perturbation theory. We apply the method to two well-studied molecules, namely, [Er{N(SiMe3)2}3] and {C(NH2)3}5[Er(CO3)4]·11H2O.