Bioelectronics for mapping gut activity

Brain Res. 2018 Aug 15;1693(Pt B):169-173. doi: 10.1016/j.brainres.2018.03.004.

Abstract

Gastric peristalsis is initiated and coordinated by an underlying bioelectrical activity, termed slow waves. High-resolution (HR) mapping of the slow waves has become a fundamental tool for accurately defining electrophysiological properties in gastroenterology, including dysrhythmias in gastric disorders such as gastroparesis and functional dyspepsia. Currently, HR mapping is achieved via acquisition of slow waves taken directly from the serosa of fasted subjects undergoing invasive abdominal surgery. Recently, a minimally invasive retractable catheter and electrode has been developed for HR mapping that can only be used in short-term studies in subjects undergoing laparoscopy. Noninvasive mapping has also emerged from multichannel cutaneous electrogastrography; however, it lacks sufficient resolution and is prone to artifacts. Bioelectronics that can map slow waves in conscious subjects, postprandially and long-term, are in high demand. Due to the low signal-to-noise ratio of cutaneous electrogastrography, electrodes for HR mapping of gut activity have to acquire slow waves directly from the gut; hence, development of novel device implantation methods has inevitably accompanied development of the devices themselves. Initial efforts that have paved the way toward achieving these goals have included development of miniature wireless systems with a limited number of acquisition channels using commercially available off-the-shelf electronic components, flexible HR electrodes, and endoscopic methods for minimally invasive device implantation. To further increase the spatial resolution of HR mapping, and to minimize the size and power consumption of the implant for long-term studies, application-specific integrated circuitry, wireless power transfer, and stretchable electronics technologies have had to be integrated into a single system.

Keywords: Bioelectronics; Gastrointestinal slow waves; High-resolution mapping.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Bioengineering / methods*
  • Electronics*
  • Gastroparesis / physiopathology
  • Humans
  • Stomach / anatomy & histology*
  • Stomach / physiology*