Cryptic genetic diversity, population structure, and gene flow in the Mojave rattlesnake (Crotalus scutulatus)

Mol Phylogenet Evol. 2018 Oct:127:669-681. doi: 10.1016/j.ympev.2018.06.013. Epub 2018 Jun 15.

Abstract

The Mojave rattlesnake (Crotalus scutulatus) inhabits deserts and arid grasslands of the western United States and Mexico. Despite considerable interest in its highly toxic venom and the recognition of two subspecies, no molecular studies have characterized range-wide genetic diversity and population structure or tested species limits within C. scutulatus. We used mitochondrial DNA and thousands of nuclear loci from double-digest restriction site associated DNA sequencing to infer population genetic structure throughout the range of C. scutulatus, and to evaluate divergence times and gene flow between populations. We find strong support for several divergent mitochondrial and nuclear clades of C. scutulatus, including splits coincident with two major phylogeographic barriers: the Continental Divide and the elevational increase associated with the Central Mexican Plateau. We apply Bayesian clustering, phylogenetic inference, and coalescent-based species delimitation to our nuclear genetic data to test hypotheses of population structure. We also performed demographic analyses to test hypotheses relating to population divergence and gene flow. Collectively, our results support the existence of four distinct lineages within C. scutulatus, and genetically defined populations do not correspond with currently recognized subspecies ranges. Finally, we use approximate Bayesian computation to test hypotheses of divergence among multiple rattlesnake species groups distributed across the Continental Divide, and find evidence for co-divergence at this boundary during the mid-Pleistocene.

Keywords: Gene flow; Population genomics; Population structure; RADseq; Secondary contact; Viperidae.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Base Sequence
  • Bayes Theorem
  • Cell Nucleus / genetics
  • Crotalus / classification
  • Crotalus / genetics*
  • DNA, Mitochondrial / genetics
  • Ecosystem
  • Gene Flow*
  • Genetic Variation*
  • Genetics, Population
  • Mexico
  • Phylogeny
  • Phylogeography
  • Time Factors
  • United States

Substances

  • DNA, Mitochondrial