Dichotomous mechanistic behavior in Narasaka-Heck cyclizations: electron rich Pd-catalysts generate iminyl radicals

Chem Sci. 2016 Feb 1;7(2):1508-1513. doi: 10.1039/c5sc04037j. Epub 2015 Dec 1.

Abstract

Pd-catalyzed cyclizations of oxime esters with pendant alkenes are subject to an unusual ligand controlled mechanistic divergence. Pd-systems modified with electron deficient phosphines (e.g. P(3,5-(CF3)2C6H3)3) promote efficient aza-Heck cyclization, wherein C-N bond formation occurs via alkene imino-palladation. Conversely, electron rich ligands, such as P(t-Bu)3, cause deviation to a SET pathway and, in these cases, C-N bond formation occurs via cyclization of an iminyl radical. A series of mechanistic experiments differentiate the two pathways and the scope of the hybrid organometallic radical cyclization is outlined. This study represents a rare example in Pd-catalysis where selection between dichotomous mechanistic manifolds is facilitated solely by choice of phosphine ligand.