Direct molecular dissection of tumor parenchyma from tumor stroma in tumor xenograft using mass spectrometry-based glycoproteomics

Oncotarget. 2018 May 29;9(41):26431-26452. doi: 10.18632/oncotarget.25449.

Abstract

The most widely used cancer animal model is the human-murine tumor xenograft. Unbiased molecular dissection of tumor parenchyma versus stroma in human-murine xenografts is critical for elucidating dysregulated protein networks/pathways and developing therapeutics that may target these two functionally codependent compartments. Although antibody-reliant technologies (e.g., immunohistochemistry, imaging mass cytometry) are capable of distinguishing tumor-proper versus stromal proteins, the breadth or extent of targets is limited. Here, we report an antibody-free targeted cross-species glycoproteomic (TCSG) approach that enables direct dissection of human tumor parenchyma from murine tumor stroma at the molecular/protein level in tumor xenografts at a selectivity rate presently unattainable by other means. This approach was used to segment/dissect and obtain the protein complement phenotype of the tumor stroma and parenchyma of the metastatic human lung adenocarcinoma A549 xenograft, with no need for tissue microdissection prior to mass-spectrometry analysis. An extensive molecular map of the tumor proper and the associated microenvironment was generated along with the top functional N-glycosylated protein networks enriched in each compartment. Importantly, immunohistochemistry-based cross-validation of selected parenchymal and stromal targets applied on human tissue samples of lung adenocarcinoma and normal adjacent tissue is indicative of a noteworthy translational capacity for this unique approach that may facilitate identifications of novel targets for next generation antibody therapies and development of real time preclinical tumor models.

Keywords: lung cancer; tumor microenvironment.