Molecular Genetics and Breeding for Nutrient Use Efficiency in Rice

Int J Mol Sci. 2018 Jun 14;19(6):1762. doi: 10.3390/ijms19061762.

Abstract

In the coming decades, rice production needs to be carried out sustainably to keep the balance between profitability margins and essential resource input costs. Many fertilizers, such as N, depend primarily on fossil fuels, whereas P comes from rock phosphates. How long these reserves will last and sustain agriculture remains to be seen. Therefore, current agricultural food production under such conditions remains an enormous and colossal challenge. Researchers have been trying to identify nutrient use-efficient varieties over the past few decades with limited success. The concept of nutrient use efficiency is being revisited to understand the molecular genetic basis, while much of it is not entirely understood yet. However, significant achievements have recently been observed at the molecular level in nitrogen and phosphorus use efficiency. Breeding teams are trying to incorporate these valuable QTLs and genes into their rice breeding programs. In this review, we seek to identify the achievements and the progress made so far in the fields of genetics, molecular breeding and biotechnology, especially for nutrient use efficiency in rice.

Keywords: NPK fertilizers; agronomic traits; molecular markers; quantitative trait loci.

Publication types

  • Review

MeSH terms

  • Edible Grain / genetics*
  • Edible Grain / growth & development
  • Edible Grain / metabolism
  • Edible Grain / standards
  • Nitrogen / metabolism
  • Oryza / genetics*
  • Oryza / growth & development
  • Oryza / metabolism
  • Phosphorus / metabolism
  • Plant Breeding / methods*
  • Quantitative Trait Loci

Substances

  • Phosphorus
  • Nitrogen