Molecular Approach to Conjugated Polymers with Biomimetic Properties

Acc Chem Res. 2018 Jul 17;51(7):1581-1589. doi: 10.1021/acs.accounts.7b00596. Epub 2018 Jun 13.

Abstract

The field of bioelectronics involves the fascinating interplay between biology and human-made electronics. Applications such as tissue engineering, biosensing, drug delivery, and wearable electronics require biomimetic materials that can translate the physiological and chemical processes of biological systems, such as organs, tissues. and cells, into electrical signals and vice versa. However, the difference in the physical nature of soft biological elements and rigid electronic materials calls for new conductive or electroactive materials with added biomimetic properties that can bridge the gap. Soft electronics that utilize organic materials, such as conjugated polymers, can bring many important features to bioelectronics. Among the many advantages of conjugated polymers, the ability to modulate the biocompatibility, solubility, functionality, and mechanical properties through side chain engineering can alleviate the issues of mechanical mismatch and provide better interface between the electronics and biological elements. Additionally, conjugated polymers, being both ionically and electrically conductive through reversible doping processes provide means for direct sensing and stimulation of biological processes in cells, tissues, and organs. In this Account, we focus on our recent progress in molecular engineering of conjugated polymers with tunable biomimetic properties, such as biocompatibility, responsiveness, stretchability, self-healing, and adhesion. Our approach is general and versatile, which is based on functionalization of conjugated polymers with long side chains, commonly polymeric or biomolecules. Applications for such materials are wide-ranging, where we have demonstrated conductive, stimuli-responsive antifouling, and cell adhesive biointerfaces that can respond to external stimuli such as temperature, salt concentration, and redox reactions, the processes that in turn modify and reversibly switch the surface properties. Furthermore, utilizing the advantageous chemical, physical, mechanical and functional properties of the grafts, we progressed into grafting of the long side chains onto conjugated polymers in solution, with the vision of synthesizing solution-processable conjugated graft copolymers with biomimetic functionalities. Examples of the developed materials to date include rubbery and adhesive photoluminescent plastics, biomolecule-functionalized electrospun biosensors, thermally and dually responsive photoluminescent conjugated polymers, and tunable self-healing, adhesive, and stretchable strain sensors, advanced functional biocidal polymers, and filtration membranes. As outlined in these examples, the applications of these biomimetic, conjugated polymers are still in the development stage toward truly printable, organic bioelectronic devices. However, in this Account, we advocate that molecular engineering of conjugated polymers is an attractive approach to a versatile class of organic electronics with both ionic and electrical conductivity as well as mechanical properties required for next-generation bioelectronics.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biocompatible Materials / chemical synthesis
  • Biocompatible Materials / chemistry
  • Biomimetic Materials / chemical synthesis
  • Biomimetic Materials / chemistry*
  • Chemical Engineering
  • Electric Conductivity
  • Electronics, Medical / methods
  • Pliability
  • Polymers / chemical synthesis
  • Polymers / chemistry*
  • Wearable Electronic Devices

Substances

  • Biocompatible Materials
  • Polymers