A stress recovery signaling network for enhanced flooding tolerance in Arabidopsis thaliana

Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):E6085-E6094. doi: 10.1073/pnas.1803841115. Epub 2018 Jun 11.

Abstract

Abiotic stresses in plants are often transient, and the recovery phase following stress removal is critical. Flooding, a major abiotic stress that negatively impacts plant biodiversity and agriculture, is a sequential stress where tolerance is strongly dependent on viability underwater and during the postflooding period. Here we show that in Arabidopsis thaliana accessions (Bay-0 and Lp2-6), different rates of submergence recovery correlate with submergence tolerance and fecundity. A genome-wide assessment of ribosome-associated transcripts in Bay-0 and Lp2-6 revealed a signaling network regulating recovery processes. Differential recovery between the accessions was related to the activity of three genes: RESPIRATORY BURST OXIDASE HOMOLOG D, SENESCENCE-ASSOCIATED GENE113, and ORESARA1, which function in a regulatory network involving a reactive oxygen species (ROS) burst upon desubmergence and the hormones abscisic acid and ethylene. This regulatory module controls ROS homeostasis, stomatal aperture, and chlorophyll degradation during submergence recovery. This work uncovers a signaling network that regulates recovery processes following flooding to hasten the return to prestress homeostasis.

Keywords: dehydration; flooding; reactive oxygen species; recovery; ribosome footprinting.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Abscisic Acid / genetics
  • Abscisic Acid / metabolism
  • Arabidopsis / genetics
  • Arabidopsis / metabolism*
  • Arabidopsis Proteins / genetics
  • Arabidopsis Proteins / metabolism*
  • Ethylenes / metabolism
  • NADPH Oxidases / genetics
  • NADPH Oxidases / metabolism*
  • Reactive Oxygen Species / metabolism*
  • Signal Transduction*
  • Stress, Physiological*

Substances

  • Arabidopsis Proteins
  • Ethylenes
  • Reactive Oxygen Species
  • Abscisic Acid
  • ethylene
  • respiratory burst oxidase homolog D, Arabidopsis
  • NADPH Oxidases