UV and Resonance Raman Spectroscopic and Theoretical Studies on the Solvent-Dependent Ground and Excited-State Thione → Thiol Tautomerization of 4,6-Dimethyl-2-mercaptopyrimidine (DMMP)

J Phys Chem A. 2018 Jul 5;122(26):5710-5720. doi: 10.1021/acs.jpca.8b04525. Epub 2018 Jun 25.

Abstract

The vibrational spectra of 4,6-dimethyl-2-mercaptopyrimidine (DMMP) in acetonitrile, methanol, and water were assigned by resonance Raman spectroscopy through a combination of Fourier-transform infrared spectroscopy (FT-IR), FT-Raman UV-vis spectroscopy, and density functional theoretical (DFT) calculations. The FT-Raman spectra show that the neat solid DMMP is formed as a dimer due to intermolecular hydrogen bonding. In methanol and water, however, the majority of the Raman spectra were assigned to the vibrational modes of DMMP(solvent) n ( n = 1-4) clusters containing NH···O hydrogen bonds. The intermolecular NH···O hydrogen bond interactions, which are key constituents of the stable DMMP thione structure, revealed significant structural differences in acetonitrile, methanol, and water. In addition, UV-induced hydrogen transfer isomeric reactions between the thione and thiol forms of DMMP were detected in water and acetonitrile. DFT calculations indicate that the observed thione → thiol tautomerization should occur easily in lower excited states in acetonitrile and water.