Structure and permeability of ionomers studied by atomistic molecular simulation combined with the theory of solutions in the energy representation

J Chem Phys. 2018 Jun 7;148(21):214903. doi: 10.1063/1.5018884.

Abstract

Ionomers play a key role in forming the catalyst layer of polymer electrolyte fuel cells. In the present work, we performed atomistic molecular dynamics simulations and free-energy calculations with the energy-representation method for sulfonated polyethersulfone (SPES) and its derivatives toward the rational design of ionomers for carbon alloy catalysts. It was observed that H2O aggregates strongly in the branched SPES systems with fluorocarbons and is located homogeneously in the systems without fluorocarbons. The O2 permeability was then examined within the framework of the solubility-diffusion mechanism. The permeability was seen to be large for the branched SPES with fluorocarbons, indicating that the performance of ionomers as a permeation medium for O2 may be tuned by the flexibility and branching of the polymer chain.