Cross-Linked Sulfonated Poly(arylene ether sulfone) Containing a Flexible and Hydrophobic Bishydroxy Perfluoropolyether Cross-Linker for High-Performance Proton Exchange Membrane

ACS Appl Mater Interfaces. 2018 Jul 5;10(26):21788-21793. doi: 10.1021/acsami.8b05139. Epub 2018 Jun 19.

Abstract

Here we show a simple and effective cross-linking method to prepare a high performance cross-linked sulfonated poly(arylene ether sulfone) (C-SPAES) membrane using bishydroxy perfluoropolyether (PFPE) as a cross-linker for fuel cell applications. The C-SPAES membrane shows much improved physicochemical stability due to the cross-linked structure and reasonably high proton conductivity compared to the non-cross-linked SPAES membrane due to the incorporation of flexible PFPE and the effective phase-separated morphology between the hydrocarbon and perfluorinated moieties forming well-connected networks. Under intermediate-temperature and low humidity conditions (90 °C, 50% RH, and 150 kPa), the membrane electrode assembly employing the C-SPAES membrane reveals an outstanding cell performance (1.17 W cm-2 at 0.65 V) ascribed to its reasonably high proton conductivity and enhanced interfacial compatibility between the perfluorinated moieties in the electrode and C-SPAES membrane. Furthermore, a hydration-dehydration cycling test result at 90 °C reveals that the C-SPAES membrane has notable durability against rigorous operating conditions.

Keywords: cross-linking; hydration−dehydration cycling; phase separation; proton exchange membrane, bishydroxy perfluoropolyether; sulfonated poly(arylene ether sulfone).