Immobilization of tobacco etch virus (TEV) protease on a high surface area protein nanofibril scaffold

Biotechnol Prog. 2018 Nov;34(6):1506-1512. doi: 10.1002/btpr.2670. Epub 2018 Sep 8.

Abstract

Tobacco etch virus (TEV) protease is widely used for the removal of poly-histidine affinity tags from proteins. In solution, it is a one-time use enzyme for tag cleavage that has low stability, and is therefore a good candidate for immobilization. Amyloid fibrils can act as a versatile nanoscaffold by providing a large surface area for biomolecule immobilization. Immobilization of TEV protease to amyloid fibrils grown from the surface of a small glass bead, using physisorption, successfully immobilized active TEV protease. The bead retained activity over several uses and successfully cleaved a poly-histidine tag from several his-tagged proteins. This is first time that TEV protease has been immobilized to insulin amyloid fibrils, or any protein based support. Such functionalized surface assembled amyloid fibrils show promise as a novel nanosupport for the creation of functional bionanomaterials, for example, active surface coatings for the production of fine chemicals, chemical detoxification, or biosensing. Insulin amyloid fibrils provide a new nanosupport for the immobilization of TEV protease, which could allow for the reuse of the enzyme, saving on production costs for recombinantly expressed poly-histidine tagged proteins. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1506-1512, 2018.

Keywords: amyloid fibril; enzyme immobilization; protein nanofiber; tobacco etch virus protease.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Amyloid / chemistry*
  • Endopeptidases / chemistry*
  • Enzymes, Immobilized / chemistry*

Substances

  • Amyloid
  • Enzymes, Immobilized
  • Endopeptidases
  • TEV protease